Secret sharing on large girth graphs

László Csirmaz, Péter Ligeti

Eötvös Loránd University, Department of Computeralgebra; Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences

> Mathematical Methods for Cryptography Svolvær – Lofoten 2017

・ 同 ト ・ ヨ ト ・ ヨ ト

Overview

- Secret sharing et al.
- Examples
- Problems

- Definitions
- Entropy method
- Constructions

▲ 臣 ▶ ▲ 臣 ▶ …

2

< 🗇 🕨

Secret sharing et al. Examples Problems

Informal definitions

Secret sharing

- distribute some pieces of a secret data between participants
- only the "good guys" can recover the secret from the parts
- good coalitions describe the system

Complexity

- measures the efficiency of a system
- the amount of information, the participants has to remember
- ideal schemes have complexity 1

ヘロト 人間 ト ヘヨト ヘヨト

Secret sharing et al. Examples Problems

Examples

All-or-nothing

- \bullet one qualified set only \Leftrightarrow everybody together
- $s \in_{R} \{0, 1\}, s_{i} \in_{R} \{0, 1\}$ such that $\sum s_{i} = s$

Threshold schemes

- qualified sets \Leftrightarrow coalitions of size $\geq k$
- Shamir '79 (Lagrange interpolation)
- Blakley '79 (vector spaces)

Graph-based schemes

- vertex set is qualified ⇔ spanning any edges

ヘロア ヘビア ヘビア・

э

Secret sharing et al. Examples Problems

Problems

Problem

Characterization of ideal schemes

- matroid theory elements
- this maze isn't meant for this talk

Problem

Estimation/determination of the complexity for a given system

• we focus on this one...

Secret sharing et al. Examples Problems

Examples

All-or-nothing

- one qualified set only ⇔ everybody together
- $s \in_R \{0, 1\}, s_i \in_R \{0, 1\}$ such that $\sum s_i = s$
- o complexity is 1

Threshold schemes

- qualified sets \Leftrightarrow coalitions of size $\geq k$
- Shamir '79 (Lagrange interpolation)
- Blakley '79 (vector spaces)
- complexity is 1

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Secret sharing et al. Examples Problems

Graph examples

Sporadic examples

- ideal ⇔ complete (multipartite) ⇔ 2-threshold
- small graphs (van Dijk '97, ..., Harsányi, LP '17, ...)
- recursive family of *d*-regular graphs with complexity (d+1)/2 (van Dijk and Blundo et al. '95)

Theorem (Csirmaz '07)

Let \mathcal{H}_d be the *d*-dimensional hypercube. Then $\mathbf{c}(\mathcal{H}_d) = \frac{d}{2}$.

Secret sharing et al. Examples Problems

Graph examples

Theorem (Csirmaz, LP '09)

Let G = (V, E) be a graph of girth at least 6 and with no adjacent vertices of degree at least 3. Then $\mathbf{c}(G) = 2 - \frac{1}{d}$, where *d* is the maximal degree.

Theorem (Csirmaz, Tardos '12)

Let *T* be a tree, with maximal core of size *d*. Then $c(T) = 2 - \frac{1}{d}$.

<ロ> (四) (四) (三) (三) (三)

Secret sharing et al. Examples Problems

Main problem

Problem

Does there exist large girth graphs with large complexity?

Hints

- recursive family of *d*-regular graphs of girth 6 with complexity (*d* + 1)/2 (van Dijk and Blundo et al. '95)
- *d*-dimensional hypercube (girth 4) with complexity *d*/2 (Csirmaz '07)
- graphs of girth at least 6 with no adjacent vertices of degree at least 3 and complexity 2 – 1/d (Csirmaz, LP '09)
- trees (girth 0) with complexity 2 1/d. (Csirmaz, Tardos '12)

Definitions Entropy method Constructions

Definitions: secret sharing scheme

Definition

- participants: a finite set P
- access structure: $A \subseteq 2^P$, elements of A: qualified subsets
- perfect secret sharing realizing A is $\xi_1, \xi_2, \ldots, \xi_{|P|}, \xi_s$ i.d.:
 - (i) *A* ∈ *A* ⇒ {*ξ_a* : *a* ∈ *A*} determines *ξ_s* (ii) *B* ∉ *A* ⇒ {*ξ_b* : *b* ∈ *B*} is independent of *ξ_s*

Definitions Entropy method Constructions

Definitions: complexity

Definition

- H(.) denotes the Shannon entropy
- complexity:

$$\mathbf{c}(\mathcal{A}) = \inf_{\mathcal{S}} \max_{\mathbf{v} \in V} \, rac{\mathbf{H}(\xi_{\mathbf{v}})}{\mathbf{H}(\xi_{s})}$$

- ideal access structure: when $\mathbf{c}(\mathcal{A}) = 1$
- f: 2^V → ℝ⁺ a normalized entropy function
 f(x) = H(x)/H(ξ₀)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Entropy method Constructions

General lower bounds for the complexity

Theorem (Entropy method, Blundo et al. '95)

Let $f : 2^V \mapsto \mathbb{R}^+$ be a function such that:

• f is monotone and submodular; moreover $f(\emptyset) = 0$;

 f(A) + 1 ≤ f(B) if A ⊂ B, A is independent and B is not (strict monotonicity)

 f(AC) + f(BC) ≥ f(C) + f(ABC) + 1 if C is empty or independent, AC and BC are qualified (strict submodularity).

If for any such function f we have $f(v) \ge \alpha$ for some vertex v of G, then the complexity of G is at least α .

Definitions Entropy method Constructions

How to use

- huge LP problem, solvable for small examples only
- reduce the number of inequalities, e.g.:

Lemma

For any normalized entropy function f on G_d :

$$\sum_{\nu \in G_d} f(\nu) - f(G_d) \geq \frac{d}{2} |G_d| - 1.$$

... several lemmas are coming ...

Theorem

For every graph $G_d \in \mathcal{G}_d$

$$\mathbf{C}(G_d) \geq \frac{d+1}{2}.$$

Péter Ligeti Secret sharing on large girth graphs

ヘロア ヘビア ヘビア・

ъ

Definitions Entropy method Constructions

General upper bounds for the complexity

• Constructions

Theorem (Stinson '94)

Let G = (V, E) covered by ideal graphs such that every vertex is contained in at most v and every edge is contained in at least e such graphs. Then $\mathbf{c}(G) \leq \frac{v}{e}$.

Corollary (Stinson's bound '94)

 $\mathbf{c}(G) \leq \frac{d+1}{2}$, d is the maximal degree (covering with stars)

Corollary (Erdős, Pyber '97)

 $\mathbf{c}(G) \leq c \frac{n}{\log n}$ (covering with complete bipartite graphs)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

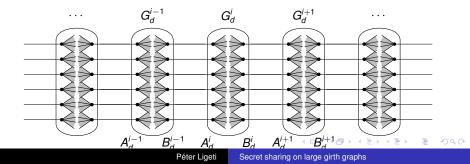
ъ

Definitions Entropy method Constructions

The graph family \mathcal{G}_d

Recursive construction

- $G_2 = (A_2, B_2)$ is the cycle of even length
- $G_d = (A_d, B_d)$ has been constructed, take several copies of G_d
- G_{d+1} : add an (arbitrary) 1-factor between B_d^i and A_d^{i+1} for all *i*



Definitions Entropy method Constructions

The graph family \mathcal{G}_d

Definition

 \mathcal{G}_d consists of all graphs G_d constructed this way

Claim

Every G_d is a d-regular bipartite graph with, and hence $\mathbf{c}(G_d) \leq (d+1)/2$ by Stinson's bound.

Theorem

For every graph $G_d \in \mathcal{G}_d$

$$\mathbf{c}(G_d) = \frac{d+1}{2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Definitions Entropy method Constructions

The main problem was...

Problem

Does there exist large girth graphs with large complexity?

Theorem

For every graph $G_d \in \mathcal{G}_d$

$$\mathbf{c}(G_d) = \frac{d+1}{2}.$$

Lemma

 \mathcal{G}_d contains graphs of girth g if

 $N_d \approx 12 \cdot 2^{36 g N_{d-1}}$.

Open problem

d-regular graph with girth $> g \Rightarrow |V| \ge d^g$.

Definitions Entropy method Constructions

Thank You for Your Attention!

Péter Ligeti Secret sharing on large girth graphs

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで