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Informal definitions

Secret sharing
distribute some pieces of a secret data between
participants
only the „good guys” can recover the secret from the parts
good coalitions describe the system

Complexity
measures the efficiency of a system
the amount of information, the participants has to
remember
ideal schemes have complexity 1
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Examples

All-or-nothing
one qualified set only , everybody together
s 2

R

{0, 1}, s
i

2
R

{0, 1} such that
P

s

i

= s

Threshold schemes
qualified sets , coalitions of size � k

Shamir ’79 (Lagrange interpolation)
Blakley ’79 (vector spaces)

Graph-based schemes
participants , vertices
vertex set is qualified , spanning any edges
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Problems

Problem
Characterization of ideal schemes

matroid theory elements
this maze isn’t meant for this talk

Problem
Estimation/determination of the complexity for a given system

we focus on this one...
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Examples

All-or-nothing
one qualified set only , everybody together
s 2

R

{0, 1}, s
i

2
R

{0, 1} such that
P

s

i

= s

complexity is 1

Threshold schemes
qualified sets , coalitions of size � k

Shamir ’79 (Lagrange interpolation)
Blakley ’79 (vector spaces)
complexity is 1
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Graph examples

Sporadic examples
ideal , complete (multipartite) , 2-threshold
small graphs (van Dijk ’97, ..., Harsányi, LP ’17, ...)
recursive family of d-regular graphs with complexity
(d + 1)/2 (van Dijk and Blundo et al. ’95)

Theorem (Csirmaz ’07)

Let H
d

be the d-dimensional hypercube. Then c(H
d

) = d

2 .
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Graph examples

Theorem (Csirmaz, LP ’09)
Let G = (V ,E) be a graph of girth at least 6 and with no
adjacent vertices of degree at least 3. Then c(G) = 2 � 1

d

,
where d is the maximal degree.

Theorem (Csirmaz, Tardos ’12)
Let T be a tree, with maximal core of size d . Then
c(T ) = 2 � 1

d

.
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Main problem

Problem
Does there exist large girth graphs with large complexity?

Hints
recursive family of d-regular graphs of girth 6 with
complexity (d + 1)/2 (van Dijk and Blundo et al. ’95)
d-dimensional hypercube (girth 4) with complexity d/2
(Csirmaz ’07)
graphs of girth at least 6 with no adjacent vertices of
degree at least 3 and complexity 2 � 1/d (Csirmaz, LP ’09)
trees (girth 0) with complexity 2 � 1/d . (Csirmaz, Tardos
’12)

Péter Ligeti Secret sharing on large girth graphs



Motivation
Methods

Definitions
Entropy method
Constructions

Definitions: secret sharing scheme

Definition
participants: a finite set P

access structure: A ✓ 2P , elements of A: qualified subsets

perfect secret sharing realizing A is ⇠1, ⇠2, . . . , ⇠|P|, ⇠s

i.d.:

(i) A 2 A ) {⇠
a

: a 2 A} determines ⇠
s

(ii) B /2 A ) {⇠
b

: b 2 B} is independent of ⇠
s
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Definitions: complexity

Definition
H(.) denotes the Shannon entropy

complexity:

c(A) = inf
S

max
v2V

H(⇠
v

)

H(⇠
s

)

ideal access structure: when c(A) = 1
f : 2V 7! R+

a normalized entropy function

f (x) = H(x)

H(⇠
s

)
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General lower bounds for the complexity

Theorem (Entropy method, Blundo et al. ’95)

Let f : 2V 7! R+
be a function such that:

f is monotone and submodular; moreover f (;) = 0;

f (A) + 1  f (B) if A ⇢ B, A is independent and B is not

(strict monotonicity)

f (AC) + f (BC) � f (C) + f (ABC) + 1 if C is empty or

independent, AC and BC are qualified (strict

submodularity).

If for any such function f we have f (v) � ↵ for some vertex v of

G, then the complexity of G is at least ↵.
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How to use

huge LP problem, solvable for small examples only
reduce the number of inequalities, e.g.:

Lemma
For any normalized entropy function f on G

d

:

P
v2G

d

f (v)� f (G
d

) � d

2 |G
d

|� 1.

... several lemmas are coming ...

Theorem
For every graph G

d

2 G
d

c(G
d

) � d+1
2 .
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General upper bounds for the complexity

Constructions

Theorem (Stinson ’94)
Let G = (V ,E) covered by ideal graphs such that every vertex

is contained in at most v and every edge is contained in at least

e such graphs. Then c(G)  v

e

.

Corollary (Stinson’s bound ’94)

c(G)  d+1
2 , d is the maximal degree (covering with stars)

Corollary (Erdős, Pyber ’97)
c(G)  c

n

log n

(covering with complete bipartite graphs)
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The graph family G
d

Recursive construction

G2 = (A2,B2) is the cycle of even length

G

d

= (A
d

,B
d

) has been constructed, take several copies of G

d

G

d+1 : add an (arbitrary) 1-factor between B

i

d

and A

i+1
d

for all i

· · ·
G

i�1
d

G

i

d

G

i+1
d

· · ·

A

i�1
d

B

i�1
d

A

i

d

B

i

d

A

i+1
d

B

i+1
d
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The graph family G
d

Definition
G

d

consists of all graphs G

d

constructed this way

Claim
Every G

d

is a d-regular bipartite graph with, and hence

c(G
d

)  (d + 1)/2 by Stinson’s bound.

Theorem
For every graph G

d

2 G
d

c(G
d

) = d+1
2 .
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The main problem was...

Problem
Does there exist large girth graphs with large complexity?

Theorem
For every graph G

d

2 G
d

c(G
d

) = d+1
2 .

Lemma
G

d

contains graphs of girth g if

N

d

⇡ 12 · 236 g N

d�1 .

Open problem
d-regular graph with girth > g ) |V | � d

g .
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Thank You for Your Attention!
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